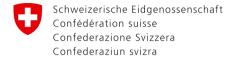
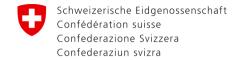


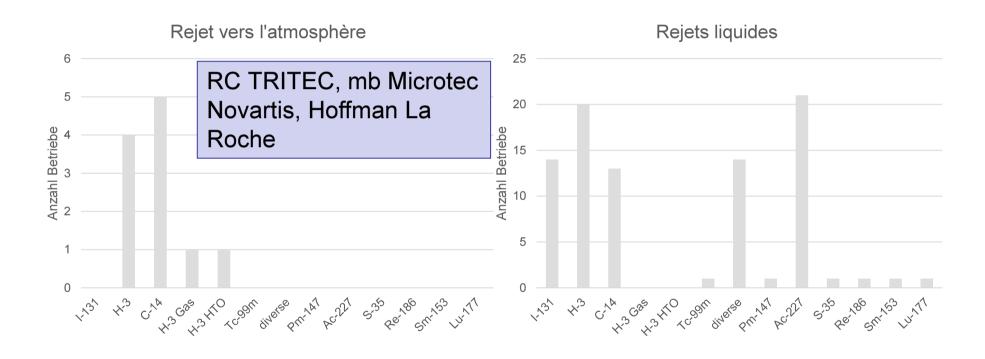
La surveillance des centres de recherche, industries et hôpitaux


JT ARRAD 27.11.2015

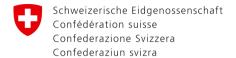
Sybille Estier, Division Radioprotection, OFSP


Contenu de l'exposé

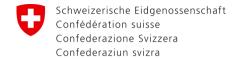
- Les acteurs
- La surveillance des grandes installations de recherche
- Industries et autres centres de recherche
- La surveillance des hôpitaux
- Pratiques mettant en jeu des NORM



Les acteurs

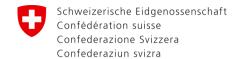

- L'OFSP octroie les autorisations pour l'utilisation des rayonnements ionisants dans les domaines de la médecine, de l'industrie et de la recherche
- L'OFSP et la SUVA sont les autorités de surveillance pour ces domaines
- L'OFSP est également l'autorité qui octroie les autorisations et assure la surveillance des installations complexes de recherche telles que le CERN et le PSI
- En Suisse, 60 industries/centres de recherche/hôpitaux disposent d'une autorisation de rejet de substances radioactives dans l'environnement (env. 100 autorisations);

Radionucléides rejetés et voies de rejet



N. B : Pas d'autorisation de rejet nécessaire, si activités rejetées sont inférieures à 100 LE par mois

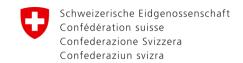
Limites de rejet


- Pour le **PSI** :
 - valeur directrice de dose liée à la source de 0.15 mSv/an sert de base pour fixer les valeurs limites de rejet de l'ensemble des installations
- Pour le CERN :
 - Le CERN ne dispose pas d'autorisation de rejet, mais a pour objectif de maintenir des doses pour la population avoisinante (en dehors de l'enceinte du centre de recherche) \leq 10 μ Sv par an
- Pour entreprises disposant d'une autorisation de rejets liquides et vers l'atmosphère:
 - -> limites de rejets fixées dans les autorisations et publiées
- Pour les autres entreprises et hôpitaux :
 - -> limites pour les rejets liquides fixées au cas par cas, de manière à ce que les valeurs limites d'immissions dans l'eau soient respectées

La surveillance au voisinage des grandes installations de recherche

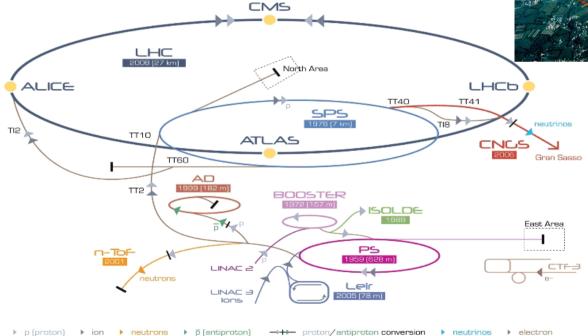
La surveillance de la radioactivité au voisinage du CERN et de l'Institut Paul Scherrer est dans une large mesure identique à celle mis en œuvre au voisinage des centrales nucléaires :

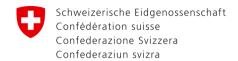
- Mesure des émissions par les exploitants
- Calcul d'impact dosimétrique basé sur les rejets effectifs
- Mesures de contrôle dans l'environnement par l'exploitant
- Programme indépendant de surveillance des doses de rayonnements et de la radioactivité dans l'environnement mis en œuvre par l'OFSP



La surveillance au voisinage des grandes installations de recherche

Le programme de surveillance de la radioactivité dans l'environnement coordonné par l'OFSP couvre tous les compartiments environnementaux

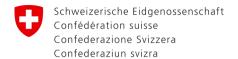

- Dosimétrie d'ambiance du rayonnement gamma ainsi que des neutrons sur une base trimestrielle (IRA) et mesures instantanées de l'exposition ambiante par l'OFSP
- Aérosols : mesure continue α / β (RADAIR) et spectrométrie γ hebdo. des filtres HVS
- Sols $(\gamma, Sr-90, \alpha)$, herbes (γ) , dépositions (γ)
- Milieu aquatiques : eaux de surface (Nant d'Avril, Rhône pour le CERN; Aar pour le PSI) et sédiments (γ)
- Produits alimentaires locaux :
 PSI : lait (γ, Sr-90), CERN : vin (γ)



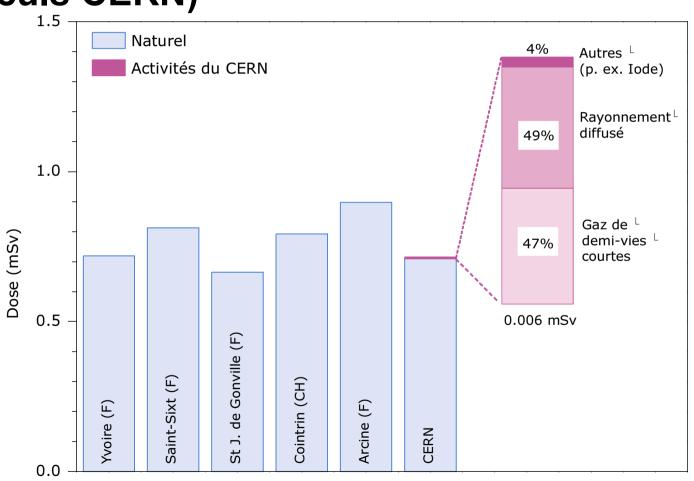
L'exemple du CERN

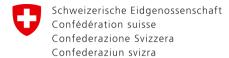
Rejets radioactifs du CERN 2014 (mesures

Tableau 1: Rejets radioactifs dans l'air (CERN, 2014).

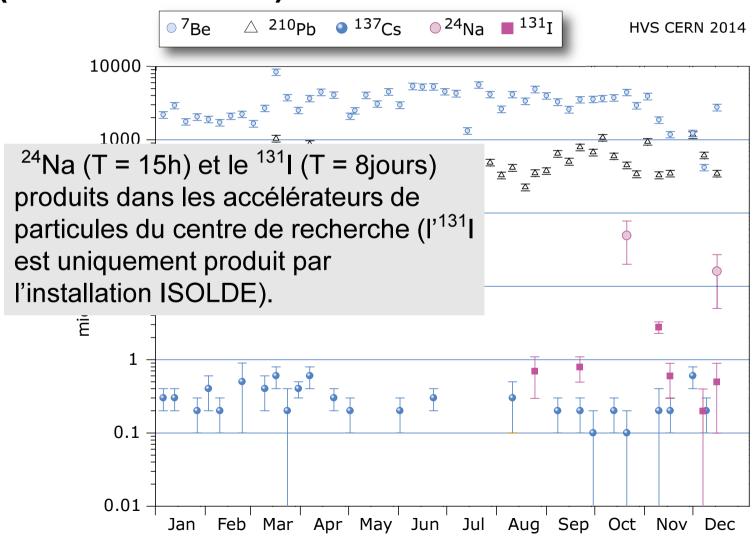

Origine du rejet	Station(s)	Air ¹¹ C, ¹³ N, ¹⁴ O, rejeté ¹⁵ O, ⁴¹ Ar		⁷ Be aérosol	Bêta aérosol	Tritium
		10 ⁶ m ³	TBq	MBq	MBq	GBq
PS BOOSTER	VMS175	73	0.3	<ld< td=""><td>1.0</td><td>1.5</td></ld<>	1.0	1.5
Anneau principal PS	VMS176 VMS177 VMS178 VMS179	396	1.6	<ld< td=""><td>>LD</td><td>27</td></ld<>	>LD	27
TT10 injection PS-SPS	VMS011	148	0.9	<ld< td=""><td>0.2</td><td>4.9</td></ld<>	0.2	4.9
TT70 transfert PS-SPS	VMS173	29	0.2	<ld< td=""><td><ld< td=""><td>1.5</td></ld<></td></ld<>	<ld< td=""><td>1.5</td></ld<>	1.5
SPS BAS	VMS051	19	0.06	<ld< td=""><td><ld< td=""><td>2.8</td></ld<></td></ld<>	<ld< td=""><td>2.8</td></ld<>	2.8
ISOLDE	VMS170	86	6.8	0.4	0.7	14
n-TOF	VMS171	4.8	1.1	<ld< td=""><td>0.003</td><td>2.1</td></ld<>	0.003	2.1
East Area	VMS181	3.1	1.1	<ld< td=""><td>0.01</td><td><ld< td=""></ld<></td></ld<>	0.01	<ld< td=""></ld<>
Evaporation tritium	-**	1.9	<ld< td=""><td><ld< td=""><td><ld< td=""><td>2.6</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>2.6</td></ld<></td></ld<>	<ld< td=""><td>2.6</td></ld<>	2.6

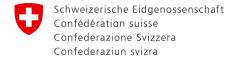
^{**} L'eau est analysée en laboratoire avant son évaporation.


Tableau 2: Rejets radioactifs dans les cours d'eau (CERN, 2014).


Origine du rejet	Station	Quantité d'eau	E Tritium Bêta/gamma (²² Na)		Rejeté dans:	
		106 m ³	GBq	MBq		
Site de Prévessin, SPS	WMS021	0.39	3.42	21.4	Le Lion (F)	
Site de Meyrin Sud-est	WMS101	2.21	5.36	48.4	Nant d'Avril (CH)	
Site de Meyrin Ouest	WMS103	0.32	0.52	7.08	Le Lion (F)	
AD infiltration	WS104	0.026	0.04	2.30	STEP*	
Site SPS BA6 + site LHC PA1	WMS910	1.27	1.04	31.1	Nant d'Avril (CH)	
Site LHC PA7	WMS970	0.012	0.014	0.44	Affluent du Marquet (F/CH)	
CNGS**, rejet par le site du LHC PA8	WMS980	0.097	0.18	2.83	Le Nant (F)	

^{*} Station d'épuration d'eau Bois-de-Bay à Satigny/GE




Impact radiologique du CERN 2014 (calculs CERN)

Surveillance de l'air au voisinage du CERN (mesures OFSP)

Surveillance des dépositions

Mesures (γ) - In situ 1 x par an au voisinage des centres de recherche (isotopes de courte période détectables)

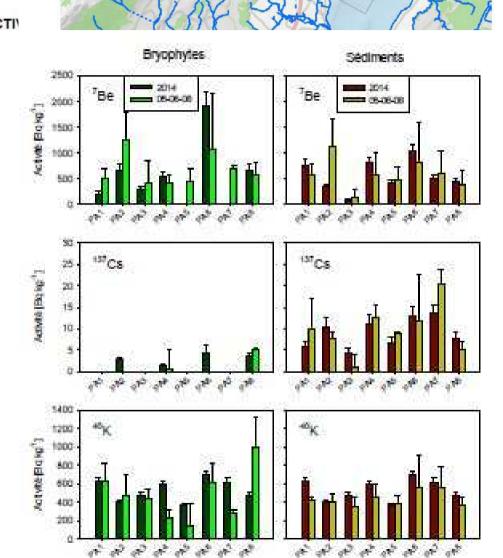
Département fédéral de l'intérieur DFI
Office fédéral de la santé publique OFSP
Unité de direction Protection des consommateurs

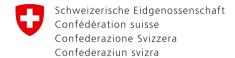
Bassin versant du Nant d'Avril

RAPPORT No 15 SUR LES MESURES DE LA RADIOACTI\ DANS LE NANT D'AVRIL (GENEVE)

Novembre 2013 - Novembre 2014

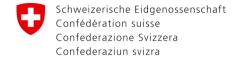
Préparé par


J.-L. Loizeau et Ph. Arpagaus


Institut F.-A. Forel Université de Genève

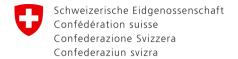
pour

L'Office Fédéral de la Santé Publique (OFSP), Be


Décembre 2014

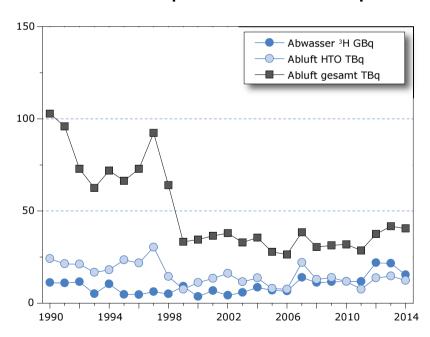
Conclusions de la surveillance au voisinage des grandes installations de recherche

- Les résultats des mesures dans l'environnement mises en oeuvre autour des grandes installations de recherche révèlent la présence de traces sporadiques de certains radio-isotopes produits par les accélérateurs des centres de recherche notamment le ²⁴Na et/ou l'¹³¹I (CERN) dans l'air ou le ²²Na dans l'eau.
- L'impact radiologique du fonctionnement de ces installations sur l'environnement et la population avoisinante est toutefois très faible
- Dans le cas du CERN, les activités maximales des radioéléments attribuables au centre de recherche relevées dans l'environnement n'ont représenté que d'infimes fractions des valeurs limites fixées par la législation suisse sur la radioprotection.
- Les rejets effectifs du PSI entrainent des doses pour la population avoisinante inférieures à 5% de la valeur directrice de 0.15 mSv/an.

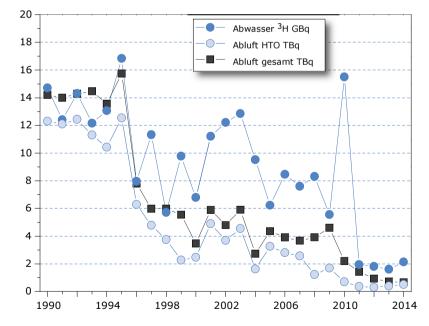


La surveillance de la radioactivité dans l'environnement au voisinage des entreprises

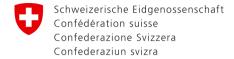
Spécificités:


Contrairement aux centrales nucléaires ou aux grandes installations de recherche, les radionucléides émis par les entreprises «conventionnelles» et autres centres de recherche sont principalement le tritium et le C-14, qui sont des émetteurs bêta purs.

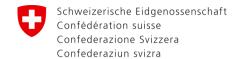
Les entreprises concernées sont les anciens producteurs de peintures luminescentes au tritium (mb microtec, Rc Tritec Teufen) ainsi que les grandes entreprises pharmaceutiques.



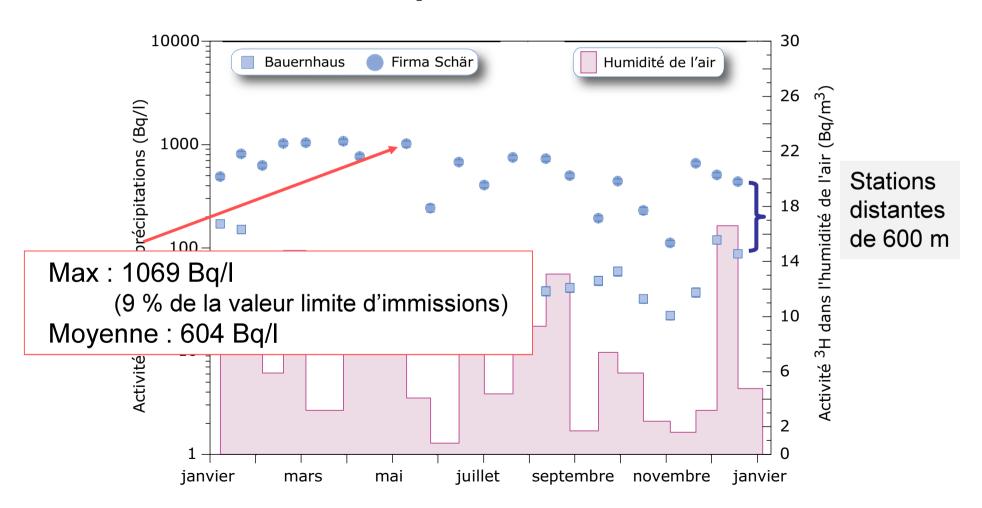
La surveillance du tritium au voisinage des entreprises

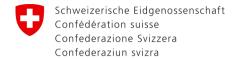

Les entreprises sont tenues de mesurer leurs émissions et de les communiquer à la SUVA qui effectue des mesures de contrôle

Suivi des rejets annuels de tritium, MB-Microtec AG, Niederwangen/BE

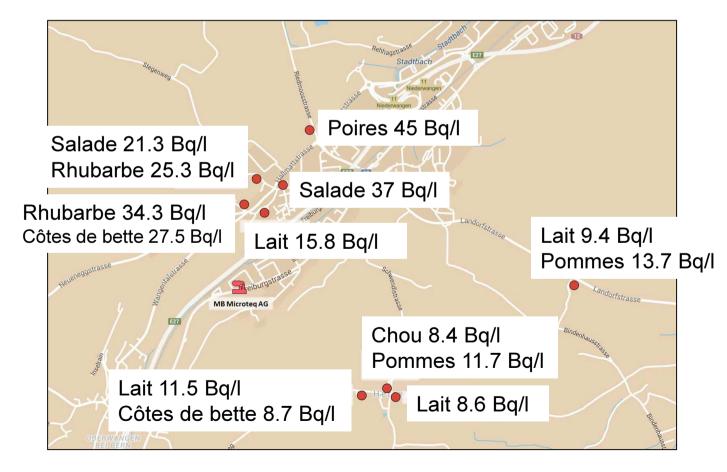


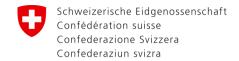
Suivi des rejets annuels de tritium, MB-Microtec AG, Niederwangen/BE

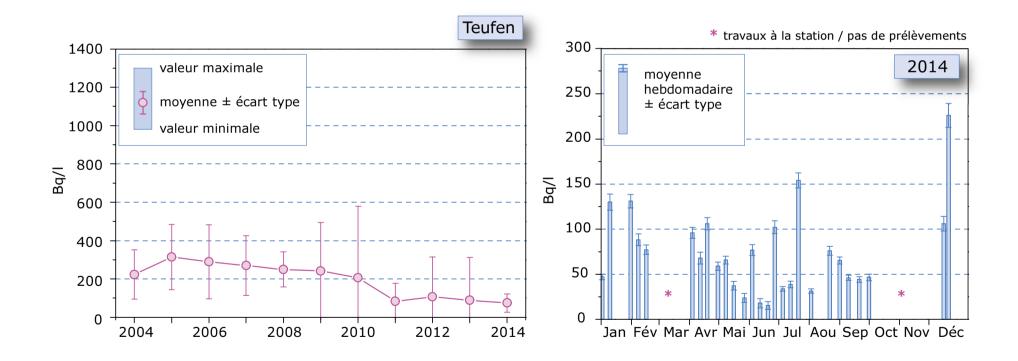


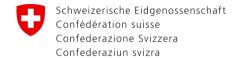

La surveillance du tritium au voisinage des entreprises

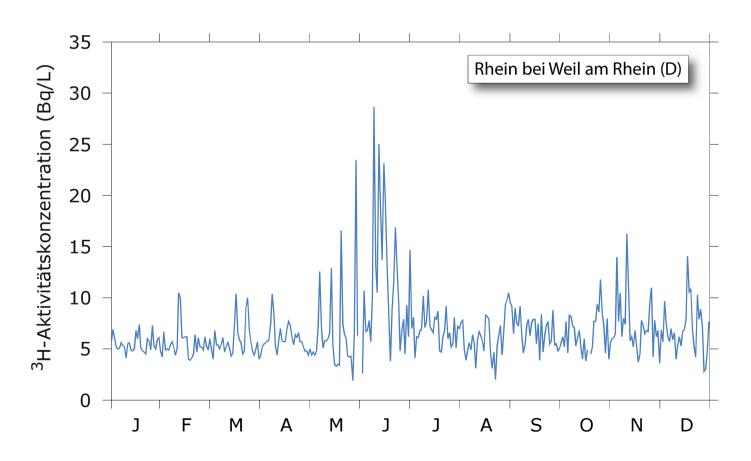
- Le programme de surveillance des immissions dans l'environnement est conduit par l'OFSP
- Il comprend l'analyse du tritium dans les précipitations, et pour mb-microtec, dans l'humidité de l'air et dans les denrées alimentaires produites localement
- En ce qui concerne les rejets liquides, la surveillance se fait par le biais du suivi du tritium dans les cours d'eaux (P. ex : Bach à Teufen, Rhin pour la région bâloise)

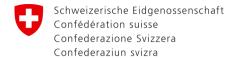


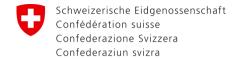

Tritium dans les précipitations au voisinage immédiat des entreprises: mb microtec

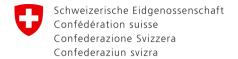



Tritium dans les denrées alimentaires (distillats) au voisinage immédiat des entreprises: mb microtec




Tritium dans les précipitations au voisinage immédiat des entreprises: RC TRITEC

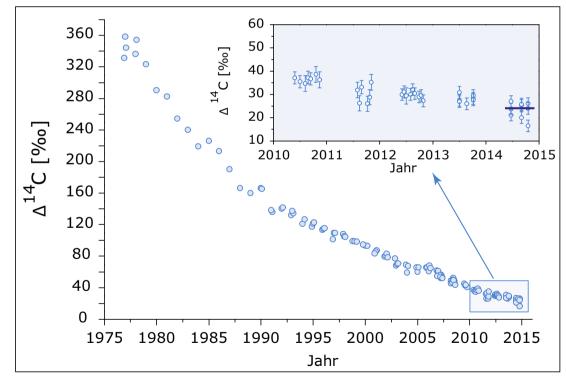

Tritium dans le Rhin (Rhein am Weil) : mesures du laboratoire cantonal de Bâle-ville


La mesure du ¹⁴C dans les échantillons de l'environnement

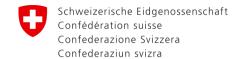
- Au cours de la photosynthèse, le CO₂ est incorporé dans la matière organique en formation. Il y a donc rapidement équilibre entre l'activité spécifique du carbone atmosphérique et celle de la matière organique végétale en cours de fabrication. C'est pourquoi les **feuillages ont été choisis comme échantillons de référence** pour la surveillance du ¹⁴C dans l'environnement.
- Le programme de surveillance comprend l'analyse d'env. 70 échantillons par an provenant du voisinage des centrales nucléaires suisses, des industries (notamment pharmaceutiques) ainsi que des usines d'incinération.

La mesure du ¹⁴C dans les échantillons de l'environnement

- Le ¹⁴C est un émetteur β de faible énergie (E_{max} = 156.5 keV)
- La mesure du ¹⁴C est un processus complexe :
 - Prise d'échantillon : difficulté liée à la complexité du cycle du carbone
 - Préparation de l'échantillon : longue préparation en laboratoire nécessaire pour extraire le carbone de l'échantillon
 - Mesure de la radioactivité : 3 techniques possibles (LSC, comptage proportionnel et AMS) mais des mesures bas niveaux nécessitent une installation lourde et chère
- L'Université de Berne (Abteilung Klima- und Umweltphysik) effectue l'ensemble des mesures de ¹⁴C du programme de surveillance depuis plus de 30 ans sur mandat de l'OFSP

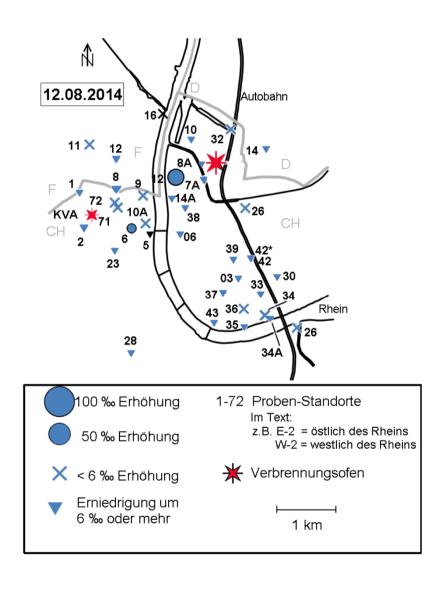

Mesure du C-14 : Résultats 2014

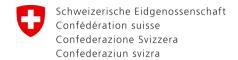
- Stations de référence (suivi de 3 stations depuis 1978)
- permet de déterminer la contribution des essais nucléaires


$$\Delta^{14}C_{\text{ref, 2014}} = 28 + -4$$
[%]

 Tous les autres résultats sont exprimés en écart net par rapport à la valeur de référence

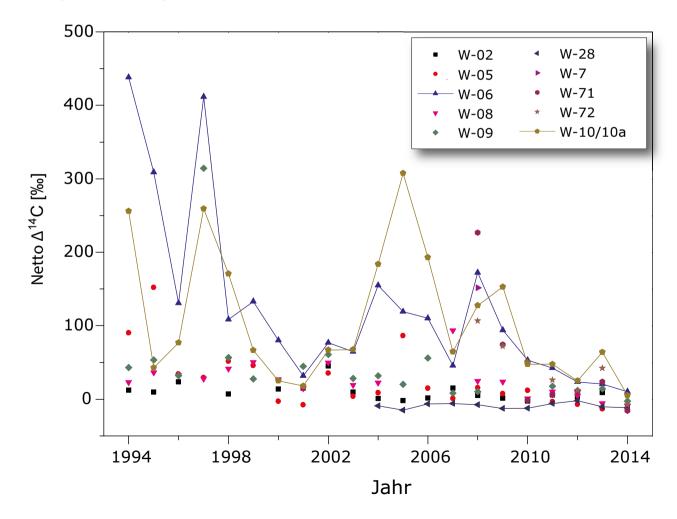
$$\Delta^{14}C_{\text{ech}} = \frac{^{14}A_{\text{ech}}}{^{14}A_0 - 1} \times 1000 \text{ [\%]}$$

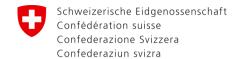

$$\Delta^{14}C_{\text{net}} = \Delta^{14}C_{\text{ech}} - \Delta^{14}C_{\text{ref, 2014}}$$


Région bâloise* : résultats 2014

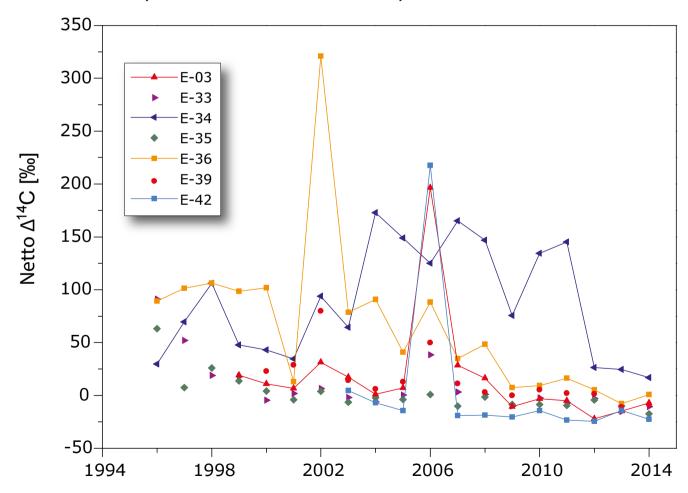
- Usines pharmaceutiques
 Hoffmann-La Roche (est du
 Rhin) et Novartis (ouest du
 Rhin) en possession d'une
 autorisation de rejet
 (Limite pour rejets atm.
 fixée à 80 GBq et 60 GBq
 /an resp.)
- A l'est du Rhin se trouve par ailleurs un four (Valorec AG) pour l'incinération des déchets contenant du ¹⁴C (selon Art. 83 ORaP) Limite autorisée : 450 GBq/an.

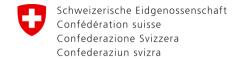
Département fédéral de l'intérieur DFI
Office fédéral de la santé publique OFSP
Unité de direction Protection des consommateurs




^{*}coûts de la surveillance pris en charge par l'industrie pharmaceutique

Région bâloise : suivi des 10 dernières années

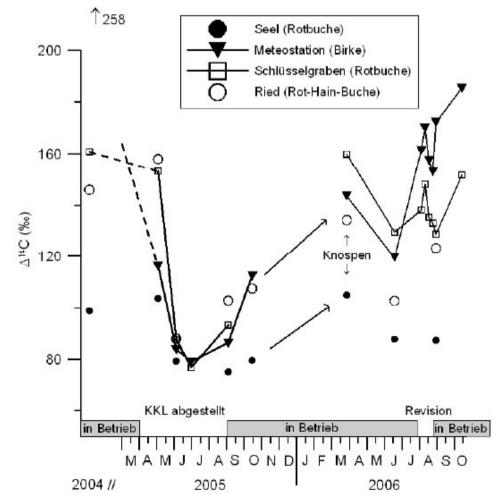

Ouest du Rhin (Novartis)

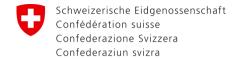


Région bâloise : suivi des 10 dernières années

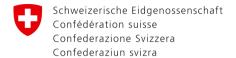
Est du Rhin (Hoffmann-La Roche*)

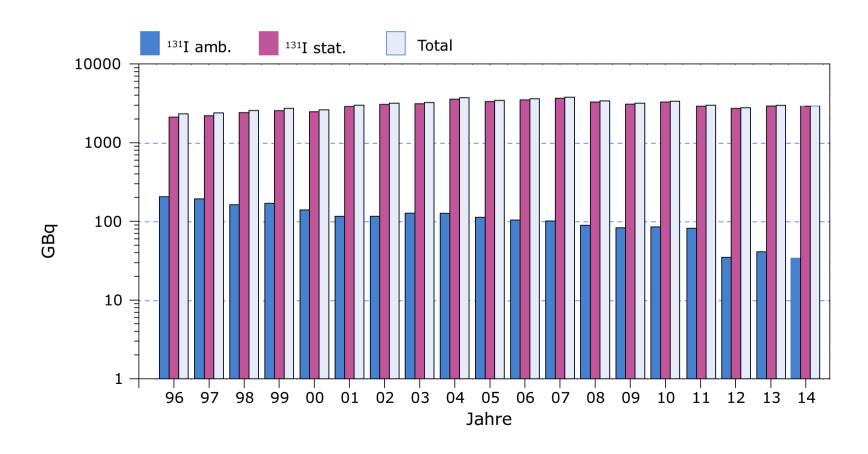
^{*}également contribution de Syngenta Crop jusqu'à 2008

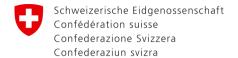



Efficacité de la méthode choisie : Exemple de la centrale nucléaire de Leibstadt (BWR)

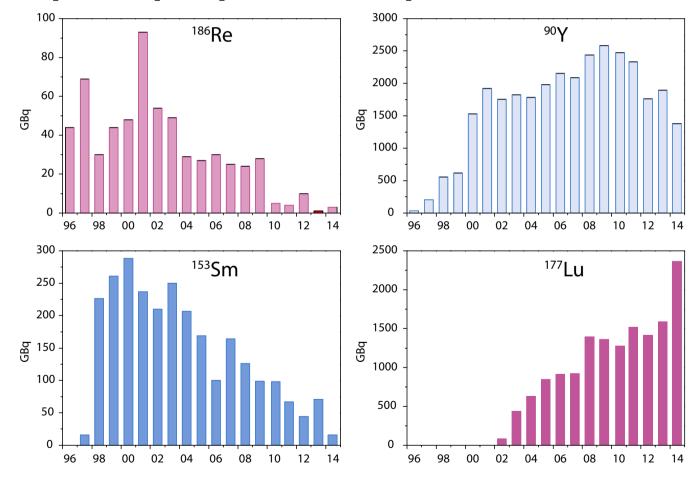
En 2005, arrêt de la centrale durant 5 mois

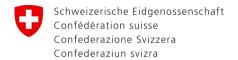

baisse significative des niveaux de C-14 enregistrée dans les feuillages

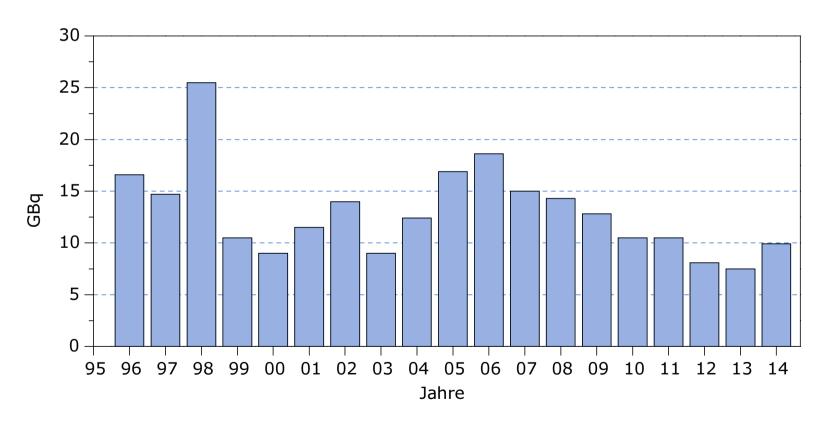


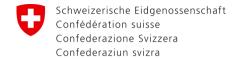

Surveillance au voisinage des entreprises : résumé des résultats et conclusions

- Les résultats des mesures montrent un marquage significatif de l'environnement au voisinage immédiat des entreprises utilisatrices de tritium (précipitations, denrées alimentaires) par ce radionucléide.
- Les concentrations enregistrées sont toutefois toujours restées bien inférieures aux limites légales (elles ont atteint au maximum 9 % de la valeur limite d'immissions pour le tritium dans les eaux accessibles au public en 2014).
- Ce constat, bien que moins marqué, s'applique également aux entreprises disposant d'une autorisation de rejet de C-14 dans l'environnement.
- La tendance générale est à une baisse des émissions, et donc du marquage environnementale.



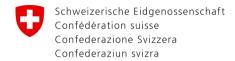

Utilisation du I-131 à but thérapeutique par les hôpitaux




Utilisation d'autres radionucléides à but thérapeutique par les hôpitaux

Rejets de I-131 dans les eaux usées par les hôpitaux de 1996 à 2014

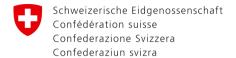
Surveillance de la radioactivité dans l'environnement au voisinage des hôpitaux


Spécificité:

Les radionucléides mis en jeu sont de courtes périodes.

Pour les traitements stationnaires à l'I-131 des cuves de rétention sont installées pour recueillir les eaux usées provenant des chambres des patients et permettre la décroissance avant rejet dans l'environnement.

La surveillance de la radioactivité dans l'environnement émise par les hôpitaux est relativement sommaire:


- en routine, elle se résume à la mesure des émetteurs γ (I-131) et du tritium dans les eaux des stations d'épurations des principales agglomérations suisses, dans lesquelles sont déversées les eaux usées provenant des hôpitaux.
- complétée occasionnellement par des programmes spécifiques

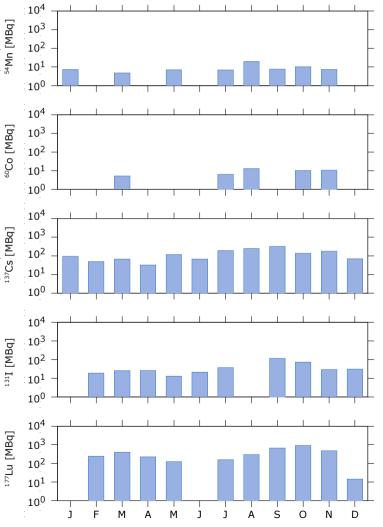
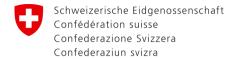
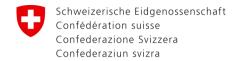

Résultats des mesures du I-131 et du H-3 dans les eaux des stations d'épuration

Tableau 2:Tritium (³H) et ¹³¹I dans les eaux de rejet des usines d'incinération et des stations d'épuration (STEP) en 2014.

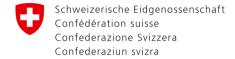

Ville	Laboratoire	Isotope	Nombre	Valeur min/max (Bq/I)	Médiane (Bq/l)	Moyenne (Bq/I)
STEP Bâle	KL-BS	¹³¹ I	52	< 0.1 - 0.8	0.25	-
		³ H	52	9 - 89	34	33
Incinération Bâle		¹³¹ I	58	< 0.1 - 39	0.5	-
		³ H	318	8.0 - 200'000	119	2030
STEP Berne	Labor Spiez	¹³¹ I	51	< 0.09 - 0.17	-	-
	URA/OFSP	³ H	12	< 5 - 54	5.5	-
STEP Bienne	URA/OFSP	³ H	52	< 10 - 193	< 10	-
STEP La Chaux-de-Fonds	URA/OFSP	³ H	50	< 10 - 38	11.6	-
STEP Lausanne	IRA	¹³¹ I	42	< 0.6	-	-
		3 H	11	< 1.5	-	-
STEP Zürich	EAWAG	¹³¹ I	51	< 0.5	-	-
	URA/OFSP	³H	12	< 5.0	-	-

Mesure des particules en suspension dans les eaux du Rhin à Weil am Rhein (KL-BS)

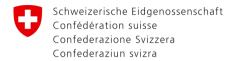


Charges mensuelles de ⁵⁴Mn, ⁶⁰Co, ¹³⁷Cs, ¹³¹I et ¹⁷⁷Lu dans les matières en suspension à Weil am Rhein, estimées sur la base de prélèvement par sondage (Prélèvement sur 2 - 6 jours par mois).

Surveillance de la radioactivité dans l'environnement au voisinage des hôpitaux


- En 2014, l'OFSP a réalisé un programme spécifique de mesure du ²²³Ra (demi-vie de 11.4 j) et de ses impuretés (²²³Ra produit par générateur ²²⁷Ac/²²⁷Th/²²³Ra), dont l'usage en médecine nucléaire est en augmentation.
- L'objectif de ces mesures était de suivre la dispersion de ce radionucléide depuis son émission et de s'assurer que la majeure partie de l'activité émise se retrouvait bien dans les boues d'épuration et non dans les rivières, puis l'environnement.

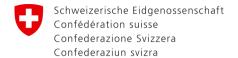
Mesure du ²²³Ra et de ses impuretés


Tabelle 1:Aktivitäten von Radium-Isotopen und ²²⁷Th im Klärschlamm (Frischschlamm) zur Zeit der Probenahme. ARA: Kläranlage

Datum	Abgaben am KSSG	Probe	²²³ Ra [Bq/kg]	²²⁴ Ra [Bq/kg]	²²⁶ Ra [Bq/kg]	²²⁷ Th [Bq/kg]
25.3.13		ARA Wohnort A	<1.7	<7.9	<6.3	<2.5
26.3.14	4 MBq Patient A					
4.4.13		ARA Wohnort A	4.2 ± 0.6	<2.6	<2.9	<1.3
9.4.13		ARA Wohnort A	2.1 ± 0.7	<4.8	<4.7	<2.0
21.5.13		ARA Wohnort B	<1.4	<5.1	<5.7	<2.2
21.5.13	4 MBq Patient B					
27.5.13		ARA Wohnort B	<1	<4.2	<3.9	<1.5
3.6.13		ARA Wohnort B	<1.2	<5.3	<4.2	<1.9
19.6.13		ARA Wohnort C	<1.7	<11.3	<4.9	<2.2
21.6.13	4 MBq Patient C					
24.6.13		ARA Wohnort B	<0.6	<2.6	<2.4	<1.1
26.6.13		ARA Wohnort C	1.1 ± 0.5	<4.1	<4.1	<1.8
4.7.13	4 MBq Patient C					
31.7.13	4 MBq Patient C					
5.8.13		ARA Wohnort C	<1.4	2.4 ± 1.9	<4.4	<2.0
12.8.13		ARA Wohnort C	<1.4	<4.8	<5.3	<2.1
21.1.14	Patient D					
23.1.14		ARA Wohnort D	3.7 ± 0.5	<8.4	<3.1	<1.4
17.2.14	Patient D					
18.2.14		ARA Wohnort D	<1.4	<6.6	<6.2	<2.5
19.2.14		ARA Wohnort D	5.3 ± 0.8	<4.4	<4.2	<1.6
20.2.14		ARA Wohnort D	3.7 ± 0.9	<9	<5.8	<2.2
21.2.14		ARA Wohnort D	2.6 ± 0.8	<9.2	<5.9	<2.3
24.2.14		ARA Wohnort D	1.9 ± 0.6	<6	<5.7	<2.3
25.2.14		ARA Wohnort D	1.3 ± 0.6	<5.7	<5.5	<2.2
27.2.14		ARA Wohnort D	0.8 ± 0.5	<5.1	<2.9	<1.3

Surveillance des hôpitaux: résumé des résultats et conclusions

- Le développement de services de médecine nucléaire peut conduire, localement, à un marquage temporaire de l'environnement. Le système de surveillance doit s'adapter à l'évolution des pratiques pour garantir que ce marquage reste local et transitoire.
- Des programmes spécifiques devraient être mis en place de manière plus régulière pour permettre de mieux apprécier la situation en termes d'impact des rejets de radionucléides par les hôpitaux.



Pratiques mettant en jeu des NORM

- Exemple du chantier «Nant de Drance»
- ORaP révisée -> Nouvelles bases légales

JAHRHUNDERT-

BAUSTELLE

Exemple de la Station de pompageturbinage Nant de Drance:

Exemple du chantier Nant de Drance

L. Rybach et al. / J. of Environ. Radioactivity 62 (2002) 277-286

281

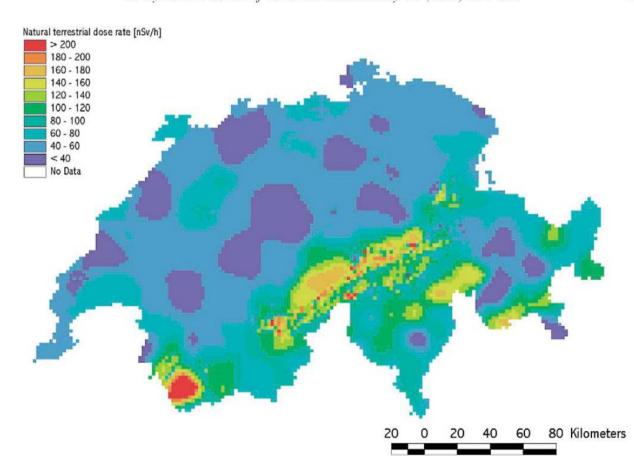
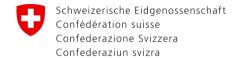



Fig. 3. Natural terrestrial dose rate map (in nSv/h) of Switzerland. Min. value: 6 nSv/h; Max. value: 368 nSv/h; Average value: 68 nSv/h; Std. deviation 35 nSv/h. Cell size: 2 km×2 km.

Exemple du Nant de Drance

- Actuellement : pas de bases légales
- Concept élaboré par la SUVA/OFSP
- Tri systématique des matériaux
- Déchets?
- → 13 t de «hot» rock avec 50-100 kg d'U

Département fédéral de l'intérieur DFI

Office fédéral de la santé publique OFSP

Unité de direction Protection des consommateurs

Merci pour votre attention!