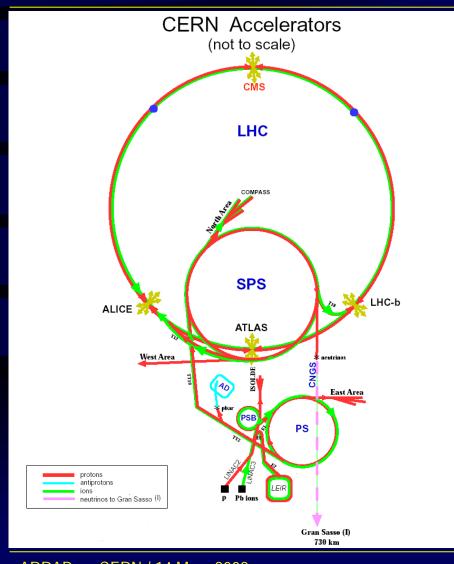


l'Assemblée générale de l'ARRAD au CERN

Les aspects environnementaux radiologiques des accélérateurs du CERN


Pavol Vojtyla CERN, Commission de Sécurité

http://www.cern.ch/environment

Résumé

- Les accélérateurs du CERN
- La source : pertes de faisceau
- Rayonnements et activation
- Surveillance
- Evaluation de l'impact radiologique
- L'impact réel (2007)
- Perspective

Les accélérateurs du CERN

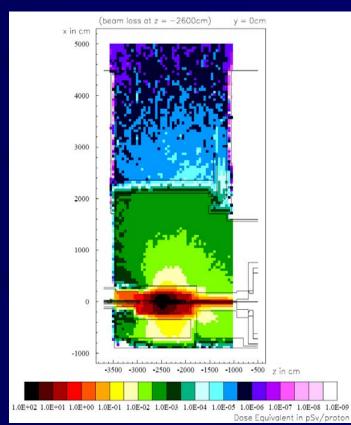
- Linacs
- PSB
- PS
- SPS
- (LHC)
- Zones d'expérience
 - ISOLDE
 - AD, LEIR, n-TOF
 - East Hall
 - Prévessin
 - CNGS
 - CTF3

La source : Pertes de faisceau

- Les particules de haute énergie doivent interagir avec la matière pour générer les rayonnements et pour activer les matériaux
 - Collimateurs
 - Les éléments d'extraction de faisceau (kicker)
 - Cibles
 - Détecteurs
 - Arrêts de faisceau (beam dump)

La différence fondamentale

- Accélérateurs à hadrons (p, IL)
- Accélérateurs à leptons (e+e-)
- Cascades de hadrons (p, n, n-bar, p-bar, $\pi^{0,\pm}$, K, γ , e^{\pm} , μ^{\pm})
- Activation des matériaux
- Rayonnement synchrotronique négligeable


- Seulement cascades
 électromagnétiques (γ, e[±], μ[±])
- Rayonnement synchrotronique
- Activation des matériaux négligeable

• Ex.: SPS, LHC

• Ex.: LEP, CLIC

Rayonnements diffusés (RD)

- Pour diffuser dans l'environnement RD doivent passer des couches épaisses de matériaux
 - Blindage (fin)
 - Terre (installations souterraines)
- Doivent être pénétrants
 - Neutrons
 - Muons
 - Photons

Simulation FLUKA (Roesler et al.)

Rayonnements diffusés: Neutrons

- Evaporation à partir des noyaux hautement excités
- Modération dans le blindage
- Gamme d'énergie de la région thermique jusqu'à ~10
 MeV (E_B d'un nucléon)
- Diffusion forte (p. e. couloirs et galléries)
- Ils activent les matériaux [p. e. réactions (n,γ)]

Rayonnements diffusés: Muons

- Progéniture de π^{\pm} (K)
- Toutes les énergies
- D'habitude particules à ionisation minimale (~GeV/c)
- Difficile à arrêter par un blindage «raisonnable»
- Restent bien focalisés
 - Dans le plan d'un accélérateur souterrain (SPS, LHC)
 - Les faire dévier par un aimant dans la terre ou dans le ciel (expériences avec des cibles fixes)

Rayonnements diffusés : Photons

- Cascade électromagnétique, qui se propage
- Mélange de γ et e[±]
- Spectre équilibré : Appoint de photons à partir de la région d'énergies hautes dans la région d'énergies basses par la diffusion Compton
- Jusqu'à 10 MeV (épaule neutronique)

RD : Structure dans le temps

- Caractéristique importante : Rayonnement pulsé
- Deux cas extrêmes :
 - Super-cycle du PS : ~0.1 μs chaque 12 s
 - Collisionneurs : Série des paquets / quelques dizaines de ns entre deux paquets → Structure quasi-continue
- Neutrons sont désynchronisés pendant leur modération
- Photons et muons suivent la structure

Substances radioactives (1)

- Réactions de spallation (radionucléides avec déficit en n, β+, EC)
- Capture de n thermiques (radionucléides avec excès de n, β-)
- Emetteurs β/γ , pas d' α contrairement aux CN
- Le matériel de la cible : A plus grand ⇒ plus de possibilités
 ⇒ plus d'espèces dans le zoo
- Grande gamme des périodes radioactives
- Plus est la période courte, plus est l'activité haute : $A = \lambda N$
- Mais, les radionucléides avec des périodes très courtes se désintègrent avant arriver à l'environnement et leurs restes sont radiologiquement peu importants

Substances radioactives (2)

- Transport dans l'environnement par les fluides
 - Air
 - Ventilation des zones avec faisceaux (refroidissement par air)
 - Eau
 - Circuits de refroidissement (d'habitude fermés, circuits primaires équipés par échangeurs d'ions, qui retiennent les ions, p. e. ⁷Be+, ²⁴Na+)
 - Fuites diverses
 - Infiltration de l'eau pluviale dans les tunnels
 - Particules de terre et de béton, poussières, fragments de corrosion

Substances radioactives: l'air

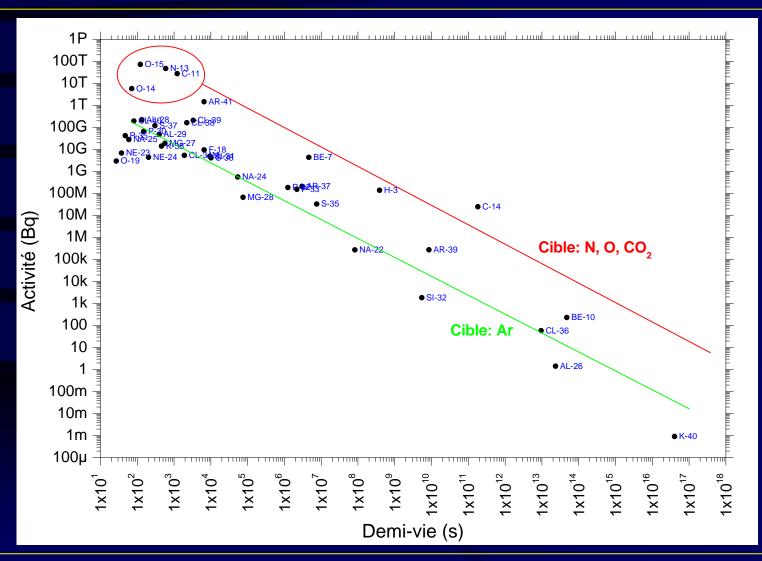
- Activation directe
 - Noyaux cible dans l'air pure :
 O₂, N₂, Ar, CO₂
- Poussières
 - Comme terre et béton
 - A discuter plus tard
- HTO évaporée

- Principaux avec périodes courtes
 - $11^{\circ}C, 13^{\circ}N, 14,15^{\circ}O(\beta^{+})$
 - ${}^{41}Ar [\beta^{-}, (n, \gamma) sur {}^{40}Ar]$
- Principaux avec périodes longues
 - ⁷Be (EC)
 - ³H (HT), ²²Na
- Autres
 - ¹⁰Be, ¹⁴C, ¹⁹O, ¹⁸F, ^{23,24}Ne, ²⁴Na, ²⁵Na, ^{27,28}Mg, ^{26,28,29}Al, ^{31,32}Si, ^{30,35,32,33}P, ^{37,38}S, ^{34m,36,38,39,40}Cl, ^{37,39}Ar, ^{38,40}K

Substances radioactives: l'eau

- Activation direct
 - Noyaux cible : H₂O
- Particules
 - Comme terre et béton
 - A discuter plus tard
- Minéraux et additifs
 - ²⁴Na
- Lixiviation
 - 3H, ²⁴Na, ²²Na (solubles)

- Principaux avec périodes courtes
 - ¹¹C, ¹³N, ^{14,15}O (β +)
- Principaux avec périodes longues
 - ³H (HTO)
 - 7Be (EC)


Substances radioactives : particules

- Noyaux cible avec A élevés
- Désintégration radioactive versus mobilité
- Sélection
- Parfois radionucléides inattendus

- ³H, ⁷Be,
- ²²Na, ²⁴Na
- 46Sc, 48V, 54Mn,
- 56Co, 57Co, 58Co, 60Co
- 65Zn
- 134Cs (!)
- ¹⁵²Eu (!)

A part le ³H, ses activités sont 2 – 3 ordres de gradeur au dessous de celle du ⁷Be, mais ils sont à considérer.

Simulation: Rejets d'air du LHC PA7 (collimateurs)

Surveillance

- Rejets des substances radioactives (l'air, l'eau)
- Rayonnements diffusés
- Mesures de la radioactivité dans des échantillons d'environnement divers
- Impacts environnemental et radiologique
- Rapports
 - Management du CERN
 - Autorités des Etats Hôtes
 - Publique

Surveillance : stations de ventilation

- Détecteurs à Si de grand surf.
 - Gaz de périodes courtes
 - ¹¹C, ¹³N, ¹⁴O, ¹⁵O, ⁴¹Ar
 - Données en temps réel (on-line)
- Filtre à aérosols
 - Analyse dans le laboratoire
 - ⁷Be, ²²Na, ⁴⁶Sc, ⁴⁸V, ⁵⁴Mn, ⁶⁰Co...
- Débit d'air dans la cheminée
 - Données en temps réel (on-line)
- Bilans mensuels de l'activité rejetée

Surveillance : stations de rejet d'eau

- A la fin du réseau de canalisation
- Moniteur
 - Sonde Nal dans blindage
 - Spectrométrie pour les radionucléides de périodes courtes (11°C, 13°N, 24°Na)
 - Données en temps réel (on-line)
- Echantillonneur
 - Analyse dans le laboratoire
 - ³H, ⁷Be, ²²Na, bêta global
- Débit d'eau
- Bilans mensuels des activités rejetées

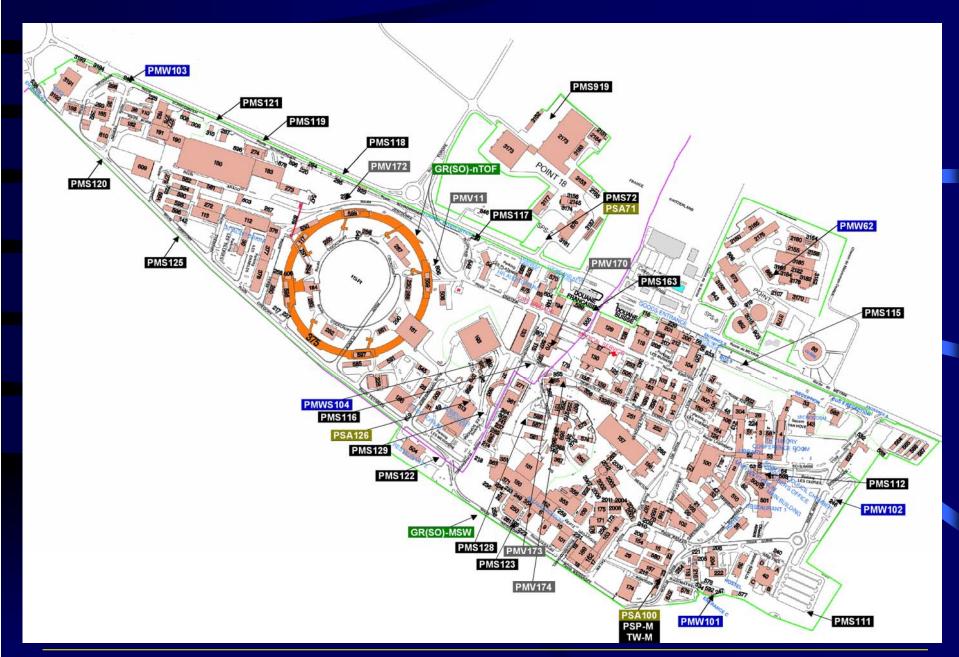
Surveillance : rayonnements diffusés

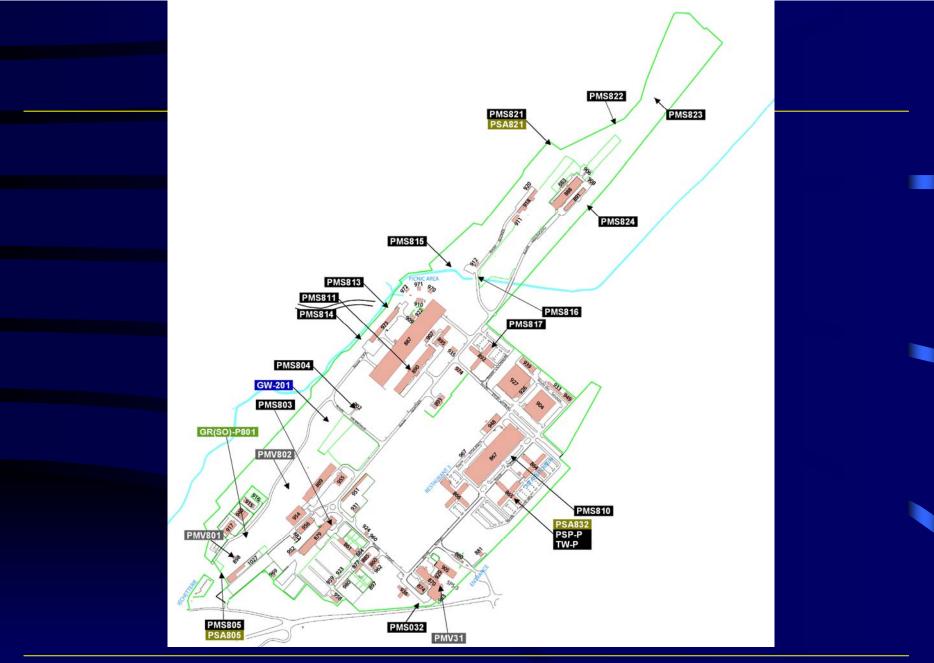
- Deux types de rayonnement
 - Neutrons
 - Photons et particules chargées pénétrantes (µ)
- Deux types d'instrument
 - Compteur-rem (n)
 - Chambre à ionisation (20 atm. Ar)
- Débit de dose en temps réel
- ~ 400 TLD (⁶LiF/⁷LiF)
- Doses trimestrielles

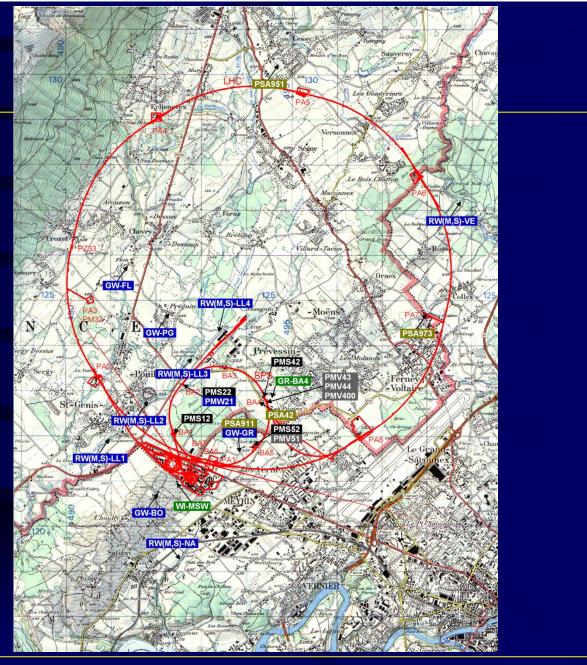
Surveillance : Dispersion atmosphérique

- 5 anémomètres à ultrason sur 100 km²
- Moyens sur 10 min
- Paramètres de turbulence atmosphérique (class de stabilité inclus)
- Précision de la vitesse : 0,01 m/s
- 2 pluviomètres (pour deposition)
- Données en temps réel (on-line)

Surveillance: Echantillons d'environnement




- Filtres à aérosol
- Herbe / terre
- Précipitations
- Coures d'eau
 - Eau
 - Sédiment
 - Mouse (bryophytes)
- Eau souterraine
- Produits agricoles
- Analyse dans le laboratoire


Surveillance: laboratoire d'environnement

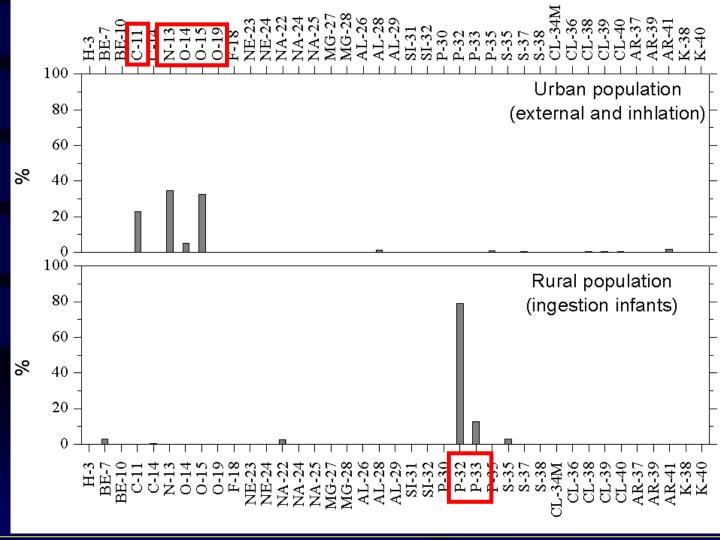
- Spectrométrie gamma
 - 5 détecteurs HPGe
- Mesures α/β
 - Compteur proportionnel avec échangeur d'échantillons
- Compteur à scintillation liquide (3H)
- Divers analyseurs chimiques
- Dispositifs pour traitement des échantillons

Evaluation de l'impact sur l'environnement (1)

- Doctrine CIRP (ICRP, 1991, mais à réviser)
- L'environnement est suffisamment protégé quand l'homme est suffisamment protégé
- La limite annuelle pour les membres du publique = 1 mSv
- Mais ALARA exige l'optimalisation pour minimiser l'exposition
- Approche pragmatique au CERN : Une installation est considérée comme optimisée si la dose efficace à chaque individu <0,01 mSv

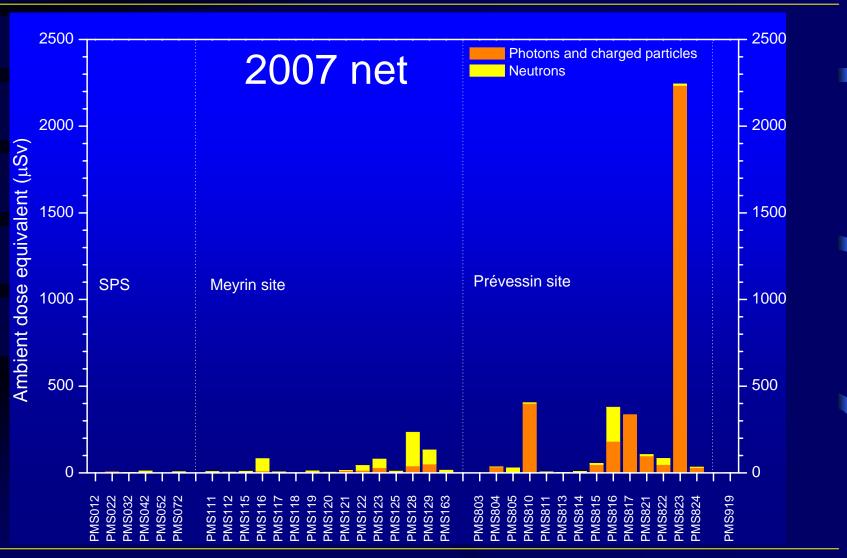
Evaluation de l'impact sur l'environnement (2)

- Rayonnements diffusés
 - Directement a partir des valeurs mesurées par les moniteur de site
 - L'exposition naturelle mesurée pendant le grand arrêt des accélérateurs (typiquement hiver/printemps)
- Bilans des rejets des substances radioactives
 - Modèles radioécologiques reconnus
 - Directive suisse HSK-R-41
 - La situation du CERN est spécifique ⇒ Propre programme de calcul

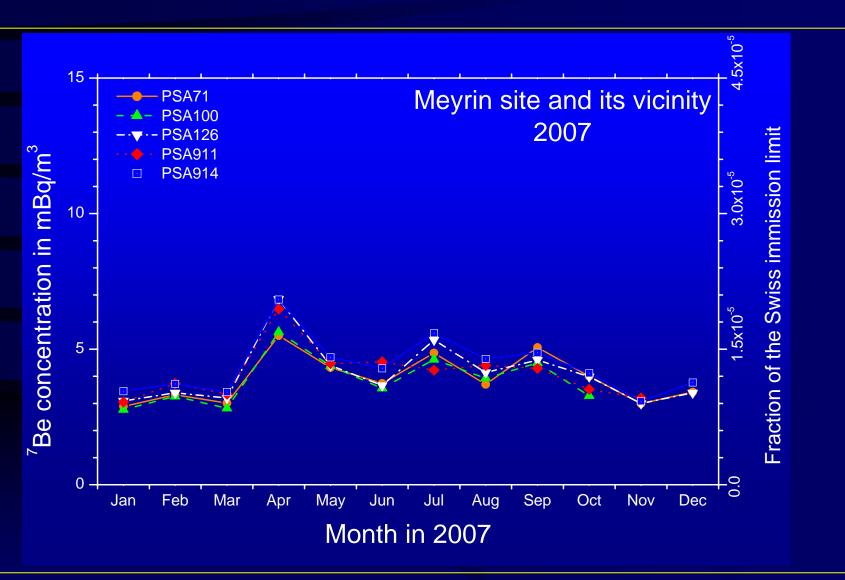

Evaluation de l'impact sur l'environnement (3)

- L'exposition externe au nuage radioactif prédomine dans la dose efficace
- Les cheminées sont court et trop près des récepteurs
- Solution : intégration Monte Carlo du kernel de dose

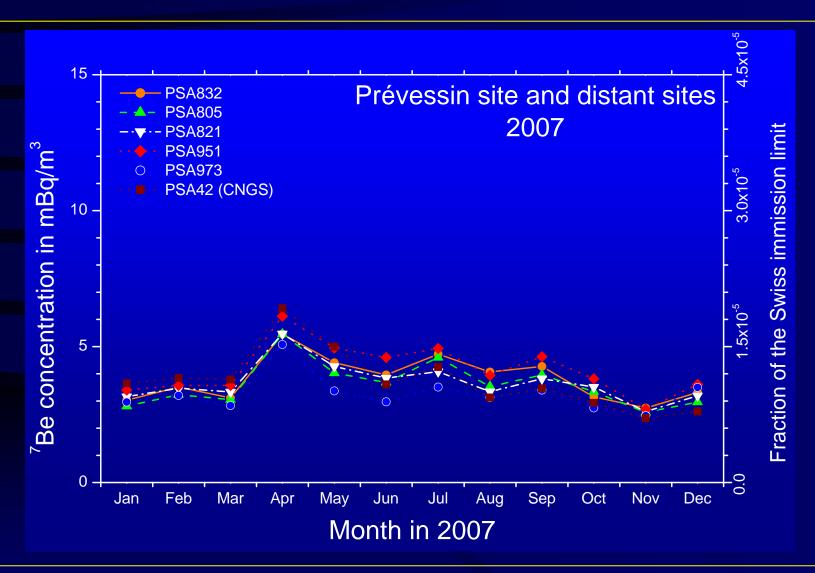
$$D_{S(L),p\gamma}(a,i) = \frac{Q}{T_1} \cdot \frac{\varepsilon}{\rho_{air}} k_s \frac{1}{4\pi} \sum_{i} e_{kerma}(E_i, a, i) \mu_{a,i} E_i Y_i \int \frac{B(E_i, \mu_i r) \exp(-\mu_i r) \chi(\mathbf{r})}{r^2} d^3 \mathbf{r}$$


Just pour illustrer

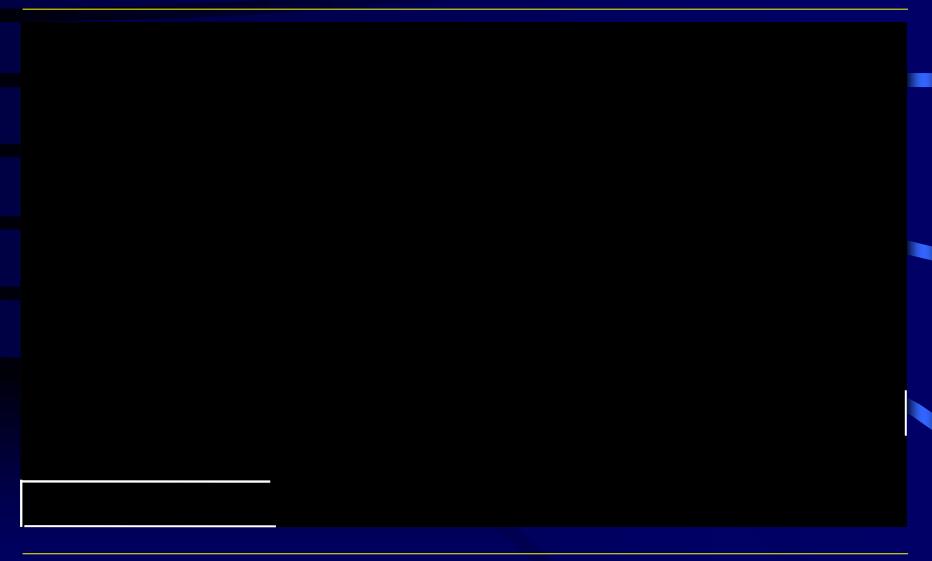
L'impact dosimétrique : exemple

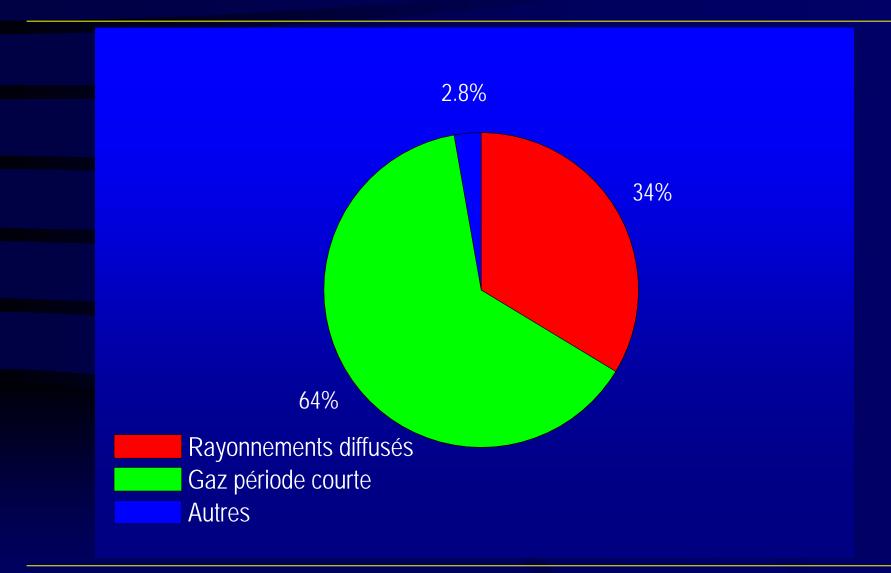


Simulation, LHC PA7


Rayonnements diffusés en 2007

⁷Be dans l'air ambiant en 2007 (1)


⁷Be dans l'air ambiant en 2007 (2)


Mousse (bryophytes) dans les rivières en 2007

Rivière de référence Bq/kg m.s.

Rejets et doses efficaces en 2007

Composition de la dose efficace (2007)

Perspectives (1)

- CLIC Compact Linear Collider (e[±]; pur comme LEP)
- LINAC 4
- PS2 Proton Synchrotron 2
- SPL Super Proton LINAC

Perspectives (2)

- Défis futurs pour la radioprotection
 - Usines à neutrinos
 - Faisceaux de protons de puissance MW
 - PBq de radioéléments dans la cible
 - Faisceaux radioactifs (source focalisée des neutrinos électronique)
 - Collisionneurs à muons
 - Exposition par les neutrinos
 - Dosimétrie de neutrinos
 - Les groups critiques très loin de la source (Pacifique?)

Ce dimanche 6 avril!

LHC 2008 – Journée Portes Ouvertes

http://lhc2008.web.cern.ch/LHC2008/

